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A random choice method for the numerical solution of steady, supersonic, two-dimensional 
plane and three-dimensional axisymmetric gas flows is presented. The random choice method 
uses exact solutions of Riemann problems and sampling techniques. It is applicable to steady, 
supersonic flows in more than one dimension because these flows are described by a hyper- 
bolic system of conservation laws in two independent variables. The method is applied to a 
variety of supersonic shock wave diffraction problems and compared to solutions obtained 
with the method of characteristics. The main advantages of the method presented are its 
general applicability and its sharp resolution of discontinuities in the flow. C 1984 Academic 

Press. Inc. 

1. INTRODUCTION 

The study of shock wave diffraction patterns, i.e., the deflection of a shock wave 
through interaction with an obstacle or another wave, is of considerable importance 
in fluid dynamic research. The basic types of shock wave diffraction: attached 
shocks, regular reflection, single Mach reflection, complex Mach reflection, and 
double Mach reflection, have been extensively studied through physical experiments 
in shock tubes and wind tunnels (see, e.g., the work of Ben-Dor and Glass [ 11). They 
constitute the basic components of more complicated gas flows over aerodynamic 
structures. 

Numerical models have proven to be powerful tools of analysis in the study and 
simulation of complicated fluid dynamic flows. If properly validated, these models 
can provide an accurate description of the flow field. In addition, they provide a way 
to validate new physical and mathematical hypotheses, thereby helping to understand 
complex wave interactions. 
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Two-dimensional plane and three-dimensional axisymmetric gas flows can be 
described, under suitable assumptions, by a hyperbolic system of conservation laws 
of the form 

Wt + f(w)r + g(w), = h(W? q i I . 1 1 \I / 

with appropriate initial and boundary conditions. In this paper we are interested in 
steady (time invariant) flows. These flows are governed by the reduced form of 
system (1.1) obtained by assuming that wI = 0, 

f(w)r + g(w)z = h(w ~1. (1.2) 

In certain physical situations, numerical solutions of these equations can be obtained 
as the large time limit of system (l.l), but here we will solve system (1.2) directly. 
Depending on the physics of the flow considered, system (1.2) can be globally hyper- 
bolic (supersonic flow), mixed hyperbolic and elliptic (transonic flow). or globally 
elliptic (subsonic flow). This in turn determines the methods of solution that are 
applicable. Many interesting steady state shock wave diffraction problems are super- 
sonic, in which case the system (1.2) is hyperbolic. For example, the deflection of a 
supersonic stream by an abrupt or gradual ramp can be globally supersonic; this type 
of flow involves the interaction of a shock with a Mach wave. 

There is a well-known mathematical analogy between two-dimensional supersonic 
steady flows governed by system (1.2) and one-dimensional time-dependent flows. 
These latter flows are governed by the reduced form of system (1.1) obtained by 
assuming that wL = 0, 

wt + f(w), = h(w, 7). (1.3) 

The essence of the mathematical analogy is that both problems are described by 
hyperbolic systems of conservation laws in two independent variables. There is also a 
qualitatively physical analogy which we will now describe by use of a simple example 
(see Cour,ant and Friedrichs [4]). Figure 1.1 shows the one-dimensional time- 
dependent flow produced by the abrupt startin g and stopping of a piston, while 

FIG. 1.1. One-dimensional time-dependent flow produced by the abrupt starting and stopping of a 
piston. 
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FIG. 1.2. Two-dimensional steady supersonic flow around a wedge. 

Fig. 1.2 shows two-dimensional steady supersonic flow around a wedge. In the 
analogy between these flows, the particle paths, the shock path, and the characteristic 
fan (sound waves) of the time-dependent one-dimensional flow correspond, respec- 
tively, to the streamlines, the oblique shock, and the Prandtl-Meyer fan (Mach 
waves) of the two-dimensional steady supersonic flow. Similarly, two-dimensional, 
axisymmetric, time-dependent flows and three-dimensional, axisymmetric, supersonic 
steady flows are analogous. 

(This analogy extends to higher dimensional flow patterns. In this paper, however, 
we make the assumption of axisymmetry because the numerical methods to be 
described are applicable only to partial differential equations with two independent 
variables. For example, there are difficulties with extending the random choice 
method to time-dependent two-dimensional flows and hence to truly three- 
dimensional supersonic steady flow. But by extension of the analogy the solution of 
the steady supersonic Riemann problems can be used, e.g., in a two-dimensional 
shock tracking scheme to solve fully three-dimensional steady supersonic flow 
problems.) 

Because systems (1.2) and (1.3) are mathematically analogous they can be solved, 
in principle, using the same numerical procedures. In particular, if the z-coordinate in 
system (1.2) may be considered as the time-like coordinate, the system (1.2) can be 
solved using a time-like marching procedure similar to those used for the solution of 
time-dependent flows. Many researchers in the field have used marching techniques 
for solving supersonic steady flows (e.g., Moretti et al. [lo] and Wardlaw et al. [ 131. 
among others). In this work we develop a random choice method to be used as the 
marching procedure. 

Numerical solutions of hyperbolic system of conservation laws must satisfy the 
following criteria: (a) the computed solution must be sufficiently accurate in the 
smooth part of the flow; (b) discontinuities such as contact lines and shock should 
remain sharp and should be transported at the correct speed; and (c) strong discon- 
tinuities should be computed stably. The methods that have been most widely used 
for finding numerical solutions of discontinuous hyperbolic problems can be 
subdivided in three main categories: shock capturing, shock tracking (shock fitting), 
and adaptive grid methods. Shock capturing techniques are fixed grid methods in 
which the interaction of waves can be handled automatically. In contrast with these 
techniques, shock tracking methods follow the discontinuities explicitly. At the 
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discontinuity the integral form of the system of conservation laws is solved to 
propagate the discontinuity; the discontinuities also form the boundaries of regions of 
smooth flow, in which the differential form of the conservation laws is solved. 
Adaptive grid methods automatically select moving grids to follow propagating 
waves, or use local mesh refinement on stationary grids. Also included in this 
category is the method of characteristics, with is the adaptive method par excellence. 

Many computational methods for solving gas flow problems are based on approx- 
imating the problem with a number of more elementary flow problems, called 
Riemann problems. The solution of these Riemann problems are important because 
they provide an explicit and elementary class of solutions *which contain extensive 
information about wave interaction. They are the basic constructive step in the 
random choice method and they provide the key input for shock tracking methods. 

The random choice method is a shock capturing technique for computing solutions 
of hyperbolic systems of conservation laws. It consists of approximating the solution 
at each time step by a piecewise constant state and advancing to the next time step by 
solving the local Riemann problems formed by the constant states on adjacenr spatial 
mesh intervals. The value of the approximate solution over each mesh interval of the 
new time step is taken to be the exact solution evaluated at a randomly chosen point. 
The main advantages of the method are its general applicability and its ability to 
resolve discontinuities and sharp interfaces without incurring over- and under- 
shooting phenomena. The random choice method was introduced by Glimm [7 ] for 
homogeneous system of conservation laws; it was developed into a numerical method 
by Chorin [2], who made extensive use of it for computations of combustion 
problems. Extensions of this method that apply to inhomogeneous hyperbolic systems 
of conservation laws have been developed by Sod [ 121, Fok [.5 1, Glimm et al. [8 ], 
and Glaz and Liu [6]. Chorin [3] has extended the random choice method to apply 
to situations where the boundaries of the computational domain change in time; 
Goodman [9] has analyzed this method as applied to initi.al-boundary value 
problems for one-dimensional conservation laws. 

The purpose of this paper is to present a random choice method for supersonic 
steady flow based‘ on the solution of the Riemann problem described by Plohr ] 1 I ], 
We apply it to a number of flow problems and compare the results to those obtained 
by the method of characteristics. The plan of the paper is as follows. In Section 2 we 
discuss the equations describing steady gas flows. In Section 3 the method of charac- 
teristics and the random choice method are briefly reviewed. In Section 4 we describe 
the solution of the Riemann problem used in the random choice method. In Section 5 
we present numerical results. Finally, in Section 6 some conclusions are drawn. 

2. TWO-DIMENSIONAL GAS FLOW 

The equations describing the axisymmetric flow of an inviscid, compressible gas 
may be written in the form 

wt + f(w)r + g(w); = h(w> y)T 
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Here p is the mass density of the fluid, m and n are the r- and z-components of 
momentum density (m = pu and n = pu, where u and ~1 are the P- and z-components 
of fluid velocity), E is the total energy density, p is the thermodynamic pressure? and 
d is the dimension of space. The four component equations of the system (2.1) 
express, respectively, the conservation of mass, Newton’s law in the r and z 
directions, and the conservation of energy. These equations are supplemented with the 
thermodynamic equation of state 

p=p@,E- (m2 +n2)/2p). 

We will assume the gas to be polytropic, so that p@, e) = (y - 1)e for some constant 
y > 1. System (2.1) is subject to appropriate initial and boundary conditions. 

We are interested in steady state and one-dimensional time-dependent solutions of 
the system (2.1). For a steady state solution w is independent of time, so that w 
satisfies the equations 

f(w), + g(w)z = hh r). (2.2) 

For a one-dimensional time-dependent solution w is independent of the z coordinate, 
so that w satisfies the equations 

w, + f(w)r = h(w, r). (2.3) 

(In this latter case we may drop the z component of Newton’s equation, so that w, 
f(w), and h(w, r) are vectors with only three components; also, d - 2 in the definition 
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of h should be replaced with d - 1 to maintain the interpretation of d as the spatiai 
dimension.) 

If system (2.2) is hyperbolic and z is a time-like direction it is possible to solve the 
initial-boundary value problem (2.2) using a marching procedure along the z 
coordinate, in a fashion similar to the methods used to solve system (2.3). For 
example, and explicit finite difference analogue of system (2.2) may be written 

g(w;+‘) = g(w;) + dz(h(w;, Y) - (iX/&);j = G;, (2.4) 

where w; is the numerical solution at z = nAz and r = idr, AZ and dr being the time 
and space increments, and where (X/&-)F is the finite difference approximation to 

f(w)r, which depends on the particular differencing utilized. For simplicity let us 
dispense with the space and time indices. Writing system (2.4) in terms of its 
components we then obtain 

n = G(l), !% = G(2), 

P 

and n 
P 

where G’@ denotes the kth component of the vector G. This system of equations can 
be reduced to solving a quadratic equation for the density, viz. 

Thus an explicit finite difference marching calculation for the solution of system (2.2) 
consists of calculating certain functions of the primitive variables at successive steps 
in the ‘Z direction and then solving a quadratic equation to obtain the primitive 
variables. 

3. THE METHOD OF CHARACTERISTICS AND THE RANDOM CHOICE METHOD 

In this section we briefly describe the method of characteristics and the random 
choice method for the steady flow of an inviscid, compressible, polytropic gas. The 
latter method is based on the solution of the Riemann problem to be described in 
Section 4. 

The method of characteristics [4] applies to smooth gas flows, so that it is 
permissible to rewrite system (2.2) in its characteristic form 

A(U) U, + B(U) Uz = C(U, r), (3.1) 
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The characteristic equation for system (3.1) is 

(u-Ju)2[(U-1L’)2-c2(1 +P)] =o, (3.2) 

which has roots 

A0 = u/v and 
~ 

* 
= uv f c2(M2 - l)l’? 

v2 -$ (3.3) 

If < = tan -‘(O/U) and p = sin -‘M-i denote the flow and Mach angles, the charac- 
teristic slopes can be written as 

A, = cot < and /I * = cot(r T P). (3.4) 

A characteristic whose slope is A, is a streamline, while one whose slope is 1, is a 
Mach line. Along characteristics the fluid quantities are constrained by ordinary 
differential equations: along streamlines 

pudu+pvdv+dp=O and dp - c2 dp = 0, (3.5) 

while along Mach lines 

Tdr+ (M2- I)“’ dp d-2 cos r 
M2 pc2+- r M sin(@ /I) dz = ” (3.6) 

A finite difference analogue of Eqs. (3.4) to (3.6) on a characteristic mesh can be 
used to obtain numerical solutions of system (3.1). We note, however, that since the 
equations apply only to smooth flows, any use of the method of characteristics for 
problems involving shocks requires special adaptive techniques at the shock. Thus to 
apply the method of characteristics to flow over a wedge, where an attached shock 
develops, it is necessary to track the shock trajectory and apply the equations for an 
oblique shock explicitly. Furthermore, the method of characteristics calculates the 
fluid quantities only at the nodes of the characteristic net, which is not rectangular 
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(see Fig. 5.3), so that an interpolation procedure is necessary to obtain values on a 
rectangular grid (e.g., for the purpose of plotting isopycnics). To obtain our results 
below we modified an implementation of the method of characteristics adapted for 
flow over a wedge by Hoffman [ 141, and used a routine from the NCAR library to 
perform the interpolation. 

The random choice method is a numerical scheme for solving hyperbolic systems 
of conservation laws which is based on a constructive proof due to Glimm 171. 
Consider the hyperbolic system 

Wf + f(w), = 0 (3.7) 

subject to the initial conditions 

w(x, t = 0) = we(x) (3-S) 

for all x. (Here, e.g., w and f(w) could describe one-dimensional gas flow.) We 
introduce a space-time grid defined by mesh lengths dx and At. The solution is to be 
calculated at points of the form (x = id-x, t = n At), where i and n are integers. Let us 
denote w(i Ax, n dt) by WY. Because we impose the initial conditions (3.3) we knows 
the values of WY for all i; thus to specify the scheme it suffices to describe how WY+’ 
is calculated once WY-~, WY, and wF+r are known, Consider the following initial value 
problem, known as Riemann problem, 

w, + f(W), = 0 (3.9) 

subject to the initial conditions 

ti(x,t=nAt)=w; for x < (i i- +) Ax, 

n for x > (i + f) Ax. 
(3. ioj 

=wi+L 

Assume that we can obtain the solution W of this problem. Also assume that we have 
been given an equidistributed sequence q” of real numbers in the interval [-is $1. 
(We have used the Van der Corput equidistributed sequence.) Then if q” + ’ > 0 we 
detine 

n+1 
WI = $(i + q” “> Ax, (n + I) At), (3.11) 

while if q” + ’ < 0 we define WY” in an analogous way in terms of the solution of the 
Riemann problem formed using WY-~ and WY at x = (i - j)dlx. By continuing this 
process the approximate solution is defined. Glimm proved that under certain 
assumptions the family of approximate solutions obtained by successively refining the 
grid will converge to a weak solution of Eq. (3.1). (The most important assumption, 
one that we will impose in our numerical implementation is that the 
Courant-Friedrichs-Lewy (CFL) condition be satisfied, viz., that smas At ,< Ax/Z, 
where .smax is the maximum wave speed of the solution.) This procedure may be also 
used to obtain numerical solutions of Eq. (3.7) if it is numerically feasible to solve the 
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corresponding Riemann problems. Of course, the solution of a Riemann problem is 
often much simpler to obtain than the solution of a general initial value problem. In 
the next section we review the solution of the Riemann problem for steady supersonic 
flow. 

To apply the random choice method to system (2.2), we first note that there is no 
difficulty in replacing (3.7) with the more general equation 

f(wL + g(w), = 0, (3.12) 

so long as this equation is hyperbolic and the Riemann problems may be solved. The 
addition of a source term, as in (2.2), requires only a minor modification of the 
method and can be effected in a number of ways [12, 5, 8,6]. For the results in this 
paper we have used the splitting method of Sod [ 121, in which two steps are used to 
advance the solution in “time” by AZ: first the Riemann problem for (3.12), i.e., (2.2) 
with source terms removed, is solved and sampled, as in the random choice method; 
then the ordinary differential equation 

g(w)z = h(w, 4, (3.13) 

i.e., (2.2) with convection terms removed and r fixed, is solved, using the result of the 
first step as the initial condition. 

For the problems we solve below it is also necessary to handle “moving” boun- 
daries: just as in the case of one-dimensional flow influenced by the movement of a 
piston, steady supersonic flow is influenced by the change in the radial position of a 
wedge surface as a function of the z coordinate. To this end we have implemented the 
extension of the random choice scheme to general initial-boundary value problems 
due to Chorin [ 31 (see also Goodman [9]). In this method the boundary position is 
of the form rtdry = (i + j) Ar at each step z = n AZ. From the known state (say) w:+ , 
in the interior of the flow a virtual state WY inside the boundary is constructed, and 
the corresponding Riemann problem is solved and sampled. (For steady supersonic 
gas flow with Neumann boundaries, the virtual state has the same density and energy 
density as the interior state, and the virtual momentum density is obtained by 
reflecting the interior momentum density with respect to the sloping boundary. Thus 
the solution of the Riemann problem will have a middle state with momentum density 
parallel to the boundary.) The position r$k of the boundary for z = (n + 1) AZ is 
obtained as follows. The slope drbdrv /dz is prescribed for each z, so we may define 

. 
r=ndz 

(3.14) 

‘n”,“;- if r< (i+q”+‘)Ar, ~~&~,=r~~~~-Ar; while if r> (i+ l+q”+‘)Ar, 
rbdry - rbdry + Ar; and otherwise r:d::, = r&, . Thus this method passively tracks the 
position of the boundary in accordance with the sampling procedure, so that even the 
boundary exhibits the random fluctuations inherent in the method. The same passive 
tracking is used to follow any shocks present in the initial data; this allows the use of 
a contour plotter that does not interpolate across the shock (cf. Figs. 5.1 and 5.6). 
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4. THE RIEMANN PROBLEM FOR STEADY SUPERSONIC FLOW 

A Riemann problem for a hyperbolic system of conservation laws 

f(w), + g(w); = 0 (4.1) 

is an initial value problem for which the initial data at z = 0 consists of two constant 
states wlert and wright separated by a jump discontinuity at r = rjump. Because the 
equation and the initial data are invariant under the scaling transformation (r. E) + 

hilp + a(r - rjump), a~), t e h solution depends only on the polar angle P, where 
cot B = (r - rjumpyz. c onsequently a Riemann problem can be reduced to solving a 
system of ordinary differential equations for the smooth parts of the solution and a 
system of nonlinear equations for the discontinuous parts of the solution For steady 
supersonic flow of a polytropic gas the differential equation can be integrated 
explicitly. 

Here we summarize the result of the analysis of the Riemann problem for steady 
supersonic flow of polytropic gases (for details see Plohr [ 1 I]). The solution of a 
Riemann problem is constructed from three elementary waves, a backward wave. a 
slip line, and a forward wave. Backward and forward waves are of two types, 
rarefactions and shocks. The following describes the properties of these waves. For 
convenience we take rjump = 0, and we specify the state of the gas with the density p. 
pressure p. Mach number M, and flow angle < = tan-‘(v/u). 

(1) Rarefaction woes are smooth solutions. They are two families, forward 
and backward, corresponding to the + and - cases below. In the T-Z plane a 
rarefaction is a wedge separating two constant states wahead and wbehind. Inside the 
rarefaction the state of the gas is constant along radial lines; at the angle 

19= < T sin-‘M-l 

the following equations are satisfied: 

(42) 

and 

Here rp is the Prandtl-Meyer function 

with 1, = [(r - 1 )/(>I + l)] “2. For rarefactions, pbehind < pahead. 
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(2) Shock waues are discontinuous solutions, also of two families, forward and 
backward. A shock with discontinuity along the ray at angle 0 separates two constant 
states Wahead and Wbehind that are related by the following equations: 

*<behind = f&head + sin-’ [M;,ii”d(l+~(~-1))“2] 

-sin-l[M,‘,,d(l+~(~-l~“‘], 

Atbehind= (&y2 [*= (1 ++f:hcad) - 1) ] I’?, (4.5) 

and 

Pbehind =Pahead 

l+NY+wY)(~-1) 
* 

l+((y-l)/2p=-l) 

For shocks, Phehind > Pahead- 

(3) SZip lines are discontinuous solutions of only one family. A slip line with 
discontinuity along the ray at an angle 0 separates constant states wleft and wright, 
that have the same flow angle I&., = 19 = rright and the same pressure pleft = pright but 
arbitrary Mach number and densities. 

The solution of a Riemann problem consists of a backward shock or rarefaction on 
the left, a forward shock or rarefaction on the right, and a slip line in between. Let 
wleft and wright denote the initial states of the gas on the two sides of the jump, and let 
<* and p* denote the common values of the flow angle and the pressure on either side 
of the slip line. It is convenient to introduce the following functions: 

/c(q) = tpy if r<l, 

1 + KY + 1 )PY)h - 1) = 
1 + ((Y - l)PY)(rl - 1) 

if q>l, 

p(q;M,,)= (&)I” [q-k(q) (1 +W;) -I]“* (4.6) 

and 

[ 
l/2 

= sin-’ P(r;Mo)-’ ( Y+l 
1 + - 2y (C--l) 1 I 

-sin-’ 
[ ( 
44,’ 1+y+l 2y @I- 1)) ‘“I if q> 1. 
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From the properties of shock and rarefaction waves above we see that 

and 

Adding these equations yields the implicit equation 

for p*, 
Once this equation has been solved for pti: we may calculate t* using either of the 

two previous equations, and we may obtain the Mach numbers and densities on either 
side of the slip line using the functions ,U and K. From this information the complete 
structure of the forward and backward waves may be determined by using the 
equations defining shock and rarefaction solutions. 

5. NUMERICAL RESULTS 

We present the results of numerical tests of our method applied to the flow of an 
inviscid, compressible, polytropic gas over wedges, cones? and compression ramps. 
The results of the first test are compared to numerical results obtained with the 
method of characteristics. The numerical solutions are described by means of contour 
plots of the density (isopycnics) in the r-z plane. 

In the first test we studied planar flow over a wedge. The initial conditions along 
the r axis consist of uniform flow parallel to the z axis with M= 3. Neumann 

FIG. 5.1. Isopycnics for plane (d= 2) shock wave diffraction as obtained with the random choice 
method. The incident Mach number is M= 3 and the wedge angle is 30”. 
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FIG. 5.2. Isopycnics for plane (d= 2) shock wave diffraction as obtained with the method of 
characteristics. The incident Mach numbers is M= 3 and the wedge angle is 30”. 

(reflecting) boundary conditions are imposed on the boundaries above and below. 
The bottom boundary “moves” as a function of the “time” z, following a trajectory 
that forms a wedge with an angle of 30’. The second corner of the wedge is not 
sharp, but rather is smoothed into a circular arc. Because the incoming flow is super- 
sonic, a shock forms at the tip of the wedge; this shock is diffracted by the 
Prandtl-Meyer fan formed at the second corner of the wedge. Figure 5.1 shows the 
results obtained with the random choice method with 120 spatial grid points. For 
comparison purposes, the results obtained using the method of characteristics are 

FIG. 5.3. Characteristic net constructed by the method of characteristics for the plane shock wave 
diffraction in Fig. 5.2. 
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FIG. 5.4. Isopycnics for conic flow (d= 3) as obtained with the random choice method. The 
incident Mach number is M= 3 and the cone angle is 30”. 

shown in Figs. 5.2 and 5.3. Figure 5.2 shows the isopycnics, while Fig. 5.3 shows the 
characteristic net constructed by this method. We remark that the results obtained 
with the method of characteristics can be considered to be very close to the exact 
solution. We can observe that the results of the random choice method, on the 
average, are very close to those of the method of characteristics. 

In the second numerical experiment we studied axisymmetric flow over a conicai 
wedge. This test is similar to the first, except that the dimension d is taken to be 3 

FIG, 5.5. Density versus radius at z = 1 for the flow over the cone shown in Fig. 5.4. 
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FIG. 5.6. Isopycnics for a compression comer as obtained with the random choice method. The 
incident Mach number is IV = 3 and the turning angle is 20”. 

instead of 2. Since (2.2) now has a nonzero inhomogeneous term, the random choice 
method must be modified; here we use the modification due to Sod [ 121 with 160 
spatial grid points. Figure 5.4 shows the results obtained with this method. The 
results reflect the fact that the conical shock is swept back more than the 
corresponding plane shock. (Note that the vertical scale in Fig. 5.4 differs from that 
in Fig. 5.1.) Between the shock and the tip of the cone the density should increase 
slightly because of the source term. This feature can only barely be seen in the 
contour plot, being obscured by random fluctuations, but the density cross section at 
z = I shown in Fig. 5.5 reflects the correct behavior. 

In the third test we studied planar flow over a compression ramp. The initial 
conditions along the r axis again consist of uniform flow parallel to the z axis with 
M= 3? and Neumann (reflecting) boundary conditions are imposed on the boundaries 

- 

) .6 

1 

rl 

FIG. 5.7. Density versus radius at the outlet as obtained with the random choice method. 
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FIG. 5.X. Pressure versus radius at the outlet as obtained with the random choice method. 

above and below. Now, however, the bottom boundary follows a trajectory that forms 
a compressive corner that turns the flow through 20” along a circular arc. Because 
the incoming flow is supersonic, the flow forms a compressive Prandtl-Meyer fan 
that develops into a shock at some distance from the boundary. For a curved 
boundary of very special shape, all of the Mach waves in the compressive fan meet at 
the same point. At this point the flow forms a Riemann problem that may be solved 
for the flow downstream. The solution of this Riemann problem yields a strong 
primary shock, a slip line, and a weak secondary wave (cf. Emanuel [ 151). In our test 

i-2 

.6 L! 

FIG. 5.9. The r and z velocities versus radius at the outlet as obtained with the random choice 
method. 
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the curved boundary is not of the special shape required, so that the intersections of 
the Mach waves is spread out. We would then expect that the point of shock 
formation is spread out, as are the slip line and secondary wave. Figures 5.6-5.9 
show the results obtained using the random choice method with 100 spatial grid 
points. Figure 5.6 shows the isopycnics of the flow. The envelope of intersections of 
the Mach waves, the shock formation, and the spread-out slip line parallel to the 
boundary are evident. Note that because the shock is not passively tracked in this 
test, the density jump at the shock is spread over a number of mesh spacings by the 
interpolation performed by the contour plotter. The shock is in fact perfectly sharp, 
as seen in Figs. 5.7-5.9, which show the density, pressure, and the Y and z velocities 
at the outlet plotted versus r, respectively. These graphs also show that the pressure 
and velocity are approximately constant through the spread-out slip line, so that this 
wave is in fact a superposition of contact discontinuities. The results obtained with 
this particular problem are rather remarkable in the way the weak density wave is 
cleanly resolved. 

6. CONCLUSIONS 

We have presented a random choice method for two-dimensional steady plane and 
axisymmetric supersonic flows. The method has been applied to various shock wave 
diffraction problems where it is shown that steady state solutions are correctly 
described. The accuracy of the method is demonstrated by way of its comparison 
with solutions obtained with the method of characteristics. The main advantages of 
the method presented are its general applicability and its sharp resolution of discon- 
tinuities. 
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